Statistics Notes
Diagnostic tests 4: likelihood ratios
Jonathan J Deeks, Douglas G Altman

The properties of a diagnostic or screening test are often described using sensitivity and specificity or predictive values, as described in previous Notes. Likelihood ratios are alternative statistics for summarising diagnostic accuracy, which have several particularly powerful properties that make them more useful clinically than other statistics.

Each test result has its own likelihood ratio, which summarises how many times more (or less) likely patients with the disease are to have that particular result than patients without the disease. More formally, it is the ratio of the probability of the specific test result in people who do have the disease to the probability in people who do not.

A likelihood ratio greater than 1 indicates that the test result is associated with the presence of the disease, whereas a likelihood ratio less than 1 indicates that the test result is associated with the absence of disease. The further likelihood ratios are from 1 the stronger the evidence for the presence or absence of disease. Likelihood ratios above 10 and below 0.1 are considered to provide strong evidence to rule in or rule out a disease.

Each test result has its own likelihood ratio, which summarises how many times more (or less) likely patients with the disease are to have that particular result than patients without the disease. More formally, it is the ratio of the probability of the specific test result in people who do have the disease to the probability in people who do not.

For a test with only two outcomes, likelihood ratios can be calculated directly from sensitivities and specificities. For example, if smoking habit is dichotomised as above or below 40 pack years, the sensitivity is 28.4% (42/148) and specificity 98.6% (142/144). The positive likelihood ratio is the proportion of obstructive airway disease who smoked more than 40 pack years (sensitivity) divided by the proportion without disease who smoked more than 40 pack years (1–specificity), 28.4/1.4 = 20.3, as before. The negative likelihood ratio is the proportion with disease who smoked less than 40 pack years (1–sensitivity) divided by the proportion without disease who smoked less than 40 pack years (specificity), 71.6/98.6 = 0.73. However, unlike sensitivity and specificity, computation of likelihood ratios does not require dichotomisation of

<table>
<thead>
<tr>
<th>Smoking habit (pack years)</th>
<th>Obstructive airway disease</th>
<th>Likelihood ratio</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥40</td>
<td>42 (28.4)</td>
<td>(2.7/48)/(2/144)</td>
<td>20.4</td>
</tr>
<tr>
<td>20-40</td>
<td>25 (16.9)</td>
<td>(2/148)/(3/144)</td>
<td>1.01</td>
</tr>
<tr>
<td>0-20</td>
<td>29 (19.6)</td>
<td>(1/148)/(0.05)</td>
<td>0.37</td>
</tr>
<tr>
<td>Never smoked or smoked for <1 yr</td>
<td>52 (36.1)</td>
<td>(0.05/148)/(0.05/144)</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Likelihood ratios are ratios of probabilities, and can be treated in the same way as risk ratios for the purposes of calculating confidence intervals.

Use of Fagan’s nomogram for calculating post-test probabilities.

Pre-test probability = 0.1
post-test odds = post-test odds × likelihood ratio
post-test probability = 0.1/0.9 × 20.4 = 0.227
Post-test probability = 0.227/3.37 = 0.069

Likelihood ratios are ratios of probabilities, and can be treated in the same way as risk ratios for the purposes of calculating confidence intervals.

For a test with only two outcomes, likelihood ratios can be calculated directly from sensitivities and specificities. For example, if smoking habit is dichotomised as above or below 40 pack years, the sensitivity is 28.4% (42/148) and specificity 98.6% (142/144). The positive likelihood ratio is the proportion of obstructive airway disease who smoked more than 40 pack years (sensitivity) divided by the proportion without disease who smoked more than 40 pack years (1–specificity), 28.4/1.4 = 20.3, as before. The negative likelihood ratio is the proportion with disease who smoked less than 40 pack years (1–sensitivity) divided by the proportion without disease who smoked less than 40 pack years (specificity), 71.6/98.6 = 0.73. However, unlike sensitivity and specificity, computation of likelihood ratios does not require dichotomisation of
Likelihood ratios can be used to help adapt the results of a study to your patients. To do this they make use of a mathematical relationship known as Bayes theorem that describes how a diagnostic finding changes our knowledge of the probability of abnormality. The post-test odds that the patient has the disease are estimated by multiplying the pretest odds by the likelihood ratio. The use of odds rather than probabilities of abnormality for particular test results, predictive values do give probabilities of abnormality for particular test results, but depend on the prevalence of abnormality in the study sample and can rarely be generalised beyond the study (except when the study is based on a suitable random sample, as is sometimes the case for population screening studies). Likelihood ratios provide a solution as they can be used to calculate the probability of abnormality, while adapting for varying prior probabilities of the chance of abnormality from different contexts.

A memorable patient

Living history

I was finally settling down at my desk when the pager blooped: it was the outpatients’ department. An extra patient had been added to the afternoon list—would I see him?

The patient was a slightly built man in his 60s. He had brought recent documentation from another hospital. I asked about his presenting complaint. “Well, I’ll try, but I wasn’t aware of everything that happened. That’s why I’ve brought my wife—she was with me at the time.”

This was turning out to be one of those perfect neurological consultations: documents from another hospital, a witness account, an articulate patient. The only question would be whether it was seizure, syncope, or transient ischaemic attack. As we went through his medical history, I studied his records and for the first time noticed the phrase “Tetralogy of Fallot.”

“Yes, my lifelong diagnosis,” he smiled. “I was understood his condition.”

“A half smile suggested that he had read my thoughts: ‘Of course.’”

To even my unpractised technique, his cardiovascular signs were a museum piece: absent left subclavian pulse, big aortic flush on the anterior chest created by the surgeon who had saved his life, central cyanosis, right-sided systolic murmurs, loud pulmonary valve closure sound (iatrogenic pulmonary valve stenosis, I reasoned), pulsatile liver—all these and undoubtedly more noted by the physician who first understood his condition.

That night, I read about his doctors. Helen Taussig had had substantial hearing impairment, a disability that would have meant the end of a career in cardiology for a less able clinician. I also learnt of the greater challenges of sexual prejudice that she fought over her life. I learnt about Alfred Blalock, the young doctor denied a residency at Johns Hopkins only to be invited back in his later years to head its surgical unit.

The experiences of a life in medicine are sometimes overwhelming. For weeks, I reflected on the perspectives opened to me by this unassuming patient. The curious irony of a man with a life threatening condition who had outlived his savours; the extraordinary vision of his all-too-human doctors; the opportunity to witness history played out in the course of a half-hour consultation. And memories were jogged, too: the words of my former professor of medicine, who showed us cases of “Fallot’s” and first told us about Taussig, the woman cardiologist; the portrait of Blalock adorning a surgical lecture theatre in medical college.

(And my patient’s neurological examination and investigations? Non-contributory. I still don’t know whether it was seizure, syncope, or transient ischaemic attack.)

Giridhar P Kalamangalam, clinical fellow in epilepsy, department of neurology, Cleveland Clinic Foundation, Cleveland OH, USA.
