GORILLACILLINS IN THE ICU: From SPACE and Beyond...

Tim T.Y. Lau, PharmD, FCSHP
Clinical Pharmacy Specialist in Infectious Diseases
Pharmaceutical Sciences, Vancouver General Hospital
Clinical Associate Professor
Faculty of Pharmaceutical Sciences, University of British Columbia
Email: Tim.Lau@vch.ca

Overview

- Gorillacillins
 1. How do we use them?
 - Principles of Gorillacillin Use
 2. What are they?
 - The Gorillacillins
 3. When do we use them?
 - Gorillacillins vs. AmpC (SPACE) & ESBL
 4. What’s up & coming?
 - Future Gorillacillins in the Pipeline

Carbapenem

- Doripenem
 - MOA: Binds to PBP; inhibits cell wall synthesis
 - PK/PD: Fluids & tissues (bile, gallbladder, peritoneal fluid, urine)
 Non-CYP metabolism/renal excretion
 - Dose: 500 mg IV q8h
 - Renal impairment
 - CrCl 30-50 mL/min: 250 mg IV q8h
 - CrCl 11-29 mL/min: 250 mg IV q12h
 - HD: ~52% dialyzed; continuous hemodiafiltration: 250 mg q12h
 - ADR:
 - >10%: h/a (4-16%), N&V (4-12%), diarrhea (6-11%)
 - 1-10%: Rash, phlebitis, anemia, transaminitis
 - Drug Interactions:
 - Probenecid: ↑ doripenem AUC by 75%
 - Valproic acid: ↓ valproate

Conflicts of Interest

- None to declare
Carbapenem

Indications:
- Nosocomial pneumonia, including VAP
 - HAP & VAP (P R MC OL)
 - Doripenem vs. piperacillin-tazobactam (N=448)
 - Cure rate: 81.3 vs. 79.8% (non-inferior)
 - All-cause mortality (28d): 13.8 vs. 14.8%
- VAP (P R MC OL)
 - (Chastre et al. Crit Care Med 2008;36:1089-96.)
- Doripenem vs. imipenem-cilastatin (N=531)
 - Cure rate: 68.3 vs. 64.2%
 - All-cause mortality (28d): 10.8 vs. 9.5%

Place in ICU Practice:
- Nosocomial pneumonia (HAP & VAP)
- Complicated intraabdominal infections
- Complicated UTI/Pyelonephritis
- Efficacy against carbapenem-resistant *Pseudomonas*
- Impact on ICU flora
- Acinetobacter
- AmpC (SPACE)/ESBL
- Meningitis

Ongoing Studies:
- VAP, usage patterns

Carbapenem

Indications:
- Complicated intraabdominal infection
 - Doripenem vs. meropenem (P R DB MC N-I) (N=476)
 - Clinical cure: 77.9 vs. 78.9%
 - Clinical cure in micro evaluable: 85.9 vs. 85.3%
- Complicated UTI, including pyelonephritis
 - Doripenem vs. levofloxacin (P R DB MC) (N=748)
 - Micro cure: 82.1 vs. 83.4%
 - Clinical cure: 95.1 vs. 90.2%

Class:
- 5th generation

MOA:
- Binds to PBP (PBP2a, 2x, 3); inhibits cell wall synthesis

PK/PD:
- Soft tissue (lung, liver, kidney, skin)
- Activated by esterases; renal excretion

Dose:
- 500 mg IV q8-12h (q12h for Gram +; q8h for Gram –)
 - Renal impairment
 - CrCl 30-<50 mL/min: 500 mg IV q12h
 - CrCl 10-29 mL/min: 250 mg IV q12h
 - CrCl <10 mL/min or HD: Not studied

ADR:
- 1-10%: h/a (5%), nausea (9%), taste disturbance (6%), diarrhea (5%), phlebitis (2%), ↑ ALT (2%)

Drug Interactions:
- None

Carbapenem

Indications:
- Complicated UTI, including pyelonephritis
 - Gram +
 - Gram –

MOA:
- Binds to PBP (PBP2a, 2x, 3); inhibits cell wall synthesis

PK/PD:
- Soft tissue (lung, liver, kidney, skin)
- Activated by esterases; renal excretion

Dose:
- 500 mg IV q8-12h (q12h for Gram +; q8h for Gram –)
 - Renal impairment
 - CrCl 30-<50 mL/min: 500 mg IV q12h
 - CrCl 10-29 mL/min: 250 mg IV q12h
 - CrCl <10 mL/min or HD: Not studied

ADR:
- 1-10%: h/a (5%), nausea (9%), taste disturbance (6%), diarrhea (5%), phlebitis (2%), ↑ ALT (2%)

Drug Interactions:
- None

Carbapenem

Indications:
- Complicated intraabdominal infections
- Complicated UTI/Pyelonephritis
- Efficacy against carbapenem-resistant *Pseudomonas*
- Impact on ICU flora
- Acinetobacter
- AmpC (SPACE)/ESBL
- Meningitis

Ongoing Studies:
- VAP, usage patterns

Carbapenem

Place in ICU Practice:
- Nosocomial pneumonia (HAP & VAP)
- Complicated intraabdominal infections
- Complicated UTI/Pyelonephritis
- Efficacy against carbapenem-resistant *Pseudomonas*
- Impact on ICU flora
- Acinetobacter
- AmpC (SPACE)/ESBL
- Meningitis

Ongoing Studies:
- VAP, usage patterns

Cephalosporin

Ceftobiprole medocaril

Class:
- 5th generation

MOA:
- Binds to PBP (PBP2a, 2x, 3); inhibits cell wall synthesis

PK/PD:
- Soft tissue (lung, liver, kidney, skin)
- Activated by esterases; renal excretion

Dose:
- 500 mg IV q8-12h (q12h for Gram +; q8h for Gram –)
 - Renal impairment
 - CrCl 30-<50 mL/min: 500 mg IV q12h
 - CrCl 10-29 mL/min: 250 mg IV q12h
 - CrCl <10 mL/min or HD: Not studied

ADR:
- 1-10%: h/a (5%), nausea (9%), taste disturbance (6%), diarrhea (5%), phlebitis (2%), ↑ ALT (2%)

Drug Interactions:
- None
Ceftobiprole medocaril

- **Spectrum:**
 - **ANTIBIOTIC**
 - **GRAM +**
 - **GRAM -**
 - **ANAEROBES**
 - **Ceftobiprole**
 - Staph, MRSA, Strep, E. faecalis, VRE faecalis
 - Enterobacteriaceae*, H. flu, Moraxella, Pseudomonas
 - Peptostreptococcus, Propionibacterium, Clostridium sp.
 - **Ceftazidime**
 - Strep
 - Enterobacteriaceae*, H. flu, Moraxella, Pseudomonas
 - Peptostreptococcus
 - **Cefotaxime/Ceftazidime**
 - Staph, Strep
 - Enterobacteriaceae*, H. flu, Moraxella
 - Peptostreptococcus
 - **Cefepime**
 - Staph, Strep
 - Enterobacteriaceae*, H. flu, Moraxella, Pseudomonas
 - Peptostreptococcus

*Enterobacteriaceae = Citrobacter, Enterobacter, E.coli, Klebsiella, Proteus, Salmonella, Serratia

- **NOT effective against**
 - E. faecium, Acinetobacter, ESBL

Indications:
- **Complicated skin and skin structure infections**
- **Gram+ complicated skin infections** (R DB MC NI, N=784)
 - Ceftobiprole 500 mg IV q12h vs. vancomycin
 - Clinical cure: 93.3 vs. 93.5%
 - MRSA cure: 91.8 vs 90%
- **Diabetic foot infection** (R DB MC NI, N=828)
 - Ceftobiprole 500 mg IV q8h vs. vancomycin/cefazidime
 - Clinical cure: 90.5 vs. 90.2%
 - MRSA cure: 89.7 vs. 86.1%
- **Pseudomonas cure:**
 - 86.7 vs. 100%

Place in ICU Practice:
- **Complicated skin and skin structure infections**
 - Polymicrobial with MRSA
- **Nosocomial pneumonia (HAP & VAP)**
 - Ceftobiprole vs. linezolid/cefazidime (R DB MC NI, N=781)
 - Clinical cure: 69.3 vs. 71.6%
 - VAP clinical cure: 38.5 vs. 56.7% (p<0.05)
- **Ongoing Studies:**
 - CAP, PK-OM, PK-ICU

Bottom-line:
- Ceftobiprole good MRSA & polymicrobial (Pseudomonas) activity
 - Limit to infections with MRSA & polymicrobial
- Further studies in intraabdominal infections, VAP, osteomyelitis, & febrile neutropenia required
- Place in practice determined by further studies

PK/PD:
- Extensive tissue distribution, pleural fluid
- Hepatic metabolism
 - T>MIC with AUC 2-4x MIC
- **Dose:**
 - 100 mg IV, then 50 mg IV q12h
 - Hepatic impairment
 - Child-Pugh Class A/B: No adjustment
 - Child-Pugh Class C: 100 mg IV, then 25 mg IV q12h
 - HD: No change
- **ADR:**
 - >10%: N/V (18-21%), diarrhea (12%)
 - 2-10%: H/a (6%), anemia (4%), ↑ LFT (4%)
- **Drug Interactions:**
 - Warfarin: ↑ INR (monitor)
Glycylcycline

- **Tigecycline**
 - **Spectrum:**
GRAM +	GRAM -	ANAEROBES	ATYPICALS
 - **NOT effective against**
 - Pseudomonas, Proteus, Morganella

- **Indications:**
 - **Complicated Skin and Skin Structure Infection**
 - Tigecycline vs. vancomycin/aztreonam (R DB) (N=1116)
 - Cure rate: 79.7 vs. 81.9%
 - **Complicated Intraabdominal Infection**
 - Tigecycline vs. imipenem-cilastatin (R DB) (N=1642)
 - Microbiological cure rate: 80.2 vs. 81.5%
 - **Community-acquired Pneumonia**
 - Tigecycline vs. levofloxacin (N=846)
 - Clinical cure: 89.7 vs. 86.3%
 - **Nosocomial Pneumonia (HAP & VAP)**
 - Tigecycline vs. imipenem-cilastatin (R DB)
 - Tigecycline inferior in 2 primary endpoints & in VAP subgroup analysis
 - Ongoing study using 2 doses of tigecycline

- **Place in ICU Practice:**
 - Complicated intraabdominal infections
 - MRSA/VRE & polymicrobial
 - Complicated skin and skin structure infection
 - MRSA/VRE & polymicrobial
 - MRSA, VRE, ESBL, Acinetobacter, C. difficile
 - HAP/VAP
 - Catheter infections, PK-bone, Mycobacterium, HAP, diabetic foot osteomyelitis, VRE/MRSA, carbapenem-resistant Gram-negative

- **Bottom-line:**
 - Tigecycline reserved for infections with MRSA/VRE & polymicrobial
 - Intraabdominal infection
 - Alternative for MDR
 - ESBL, Acinetobacter
 - Spectrum too broad for CAP
 - ? HAP/VAP
 - Does NOT cover Pseudomonas
 - ? Clinical failure with bacteremia

Gorillacillins vs. AmpC & ESBL

- **AmpC (SPACE)**
 - Hydrolyze penicillins, 1st, 2nd, & 3rd gen cephalosporin/cephamycins; resist β-lactamase inhibitors (clavulanate, tazobactam)

 - **Treatment:**
 - 1st line: Carbapenem
 - 2nd line: FQ, TMP-SMX
 - Aminoglycoside
 - 3rd line: Cefepime - Stable against AmpC Enterobacteriaceae
 - Colistimethate - Based on in vitro activity
 - Tigecycline - May be option in absence of bacteremia
 - **Do not use:** β-lactamase inhibitor combination
 - 2nd, 3rd cephalosporin
Gorillacillins vs. AmpC & ESBL

ESBL
- Hydrolyze penicillin, 3rd gen cephalosporin, aztreonam, β-lactamase inhibitor combos; often resistant to AMG, FQ, TMP-SMX

General Principles:
1. Avoid cephalosporins (1st to 4th gen)
 - “Inoculum effect” causes bugs to look susceptible in lab, BUT if numbers high in vivo MIC increases to point that organism becomes resistant
3. Small studies carbapenem as 1st line significantly lower mortality (Paterson DL et al. Clin Infect Dis 2004;39:31-7.)
 - ESBL Klebsiella bacteremia mortality 4.8 vs. 27.6% (FQ)
 - ESBL pneumonia positive response in 10/10 patients receiving carbapenem vs. 9/13 receiving cefepime
 - Do not use 2nd, 3rd cephalosporin

In Clinical Practice (ATS/IDSA HAP/VAP)

Future Gorillacillins in the Pipeline

<table>
<thead>
<tr>
<th>GRAM +</th>
<th>GRAM + & GRAM -</th>
<th>GRAM +, GRAM - & ANAEROBES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dalbavancin (lipoglycopeptide)</td>
<td>Ceftriaxone (cephalosporin)</td>
<td>Tomopenem (carbapenem)</td>
</tr>
<tr>
<td>Oritavancin (glycopeptide)</td>
<td>Iclaprim (diaminopyrimidine)</td>
<td></td>
</tr>
<tr>
<td>Telavancin (glycopeptide)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radezolid (oxazolidinone)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Questions?

Courtesy of Euan Mactavish
(http://supergorillas.blogspot.com/)